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Abstract

We develop a theory of blockchain governance. In our model, the proof-of-work sys-

tem, which is the most common set of rules for validating transactions in blockchains,

creates an industrial ecosystem with specialized suppliers of goods and services. We an-

alyze the two-way interactions between blockchain governance and the market structure

of the industries in the blockchain ecosystem. Our main result is that the proof-of-work

system leads to a situation where the governance of the blockchain is captured by a

large firm.
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1. Introduction

“The greatest challenge that new blockchains must solve isn’t speed or scaling — it’s gover-

nance.”1

All blockchains have rules that govern their operations. As blockchain stakeholders’

views about the adequacy of the existing rules evolve, these rules may change over time.
∗We thank Ulf Axelson, Giulio Fella, Peter Kondor, Igor Makarov, Jason Sturgess, Kostas Zachariadis,

and seminar participants at LSE, QMUL, and the early ideas session of the Olin Business School Corporate
Finance conference for comments and suggestions, and Bo Tang for research assistance.

1Kai Sedgwick, “Why Governance is the Greatest Problem for Blockchains To Solve”, Jul 15, 2018,
https://news.bitcoin.com/why-governance-is-the-greatest-problem-that-blockchains-must-solve/
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Blockchains thus need a governance system for deciding how to change rules. When designing

such a system, blockchains face a similar problem as corporations do, which is how to avoid

capture by interest groups. Corporations address this problem by a combination of direct

voting by shareholders and monitoring by boards of directors. By contrast, stakeholders

of public blockchains typically do not delegate monitoring to boards or other centralized

governance committees.2 Instead, the decision making process is governed by some form of

direct voting by stakeholders.

The proof-of-work system is the main decentralized governance mechanism adopted by

the largest blockchains.3 In the proof-of-work system, players, called miners, enter into a

competition where a single winner is allowed to add a block (a set of transactions) to the chain.

To win, a miner must solve a mathematical puzzle that requires significant computational

power. The probability of a miner being the first to find a solution is proportional to the

amount of computer power they allocate to the process of mining a block. The proof-of-work

system is more than just a mechanism for validating transactions. For example, if there are

competing versions of the same blockchain, each version with its own set of rules, miners

collectively “vote” for their preferred set of rules by allocating their computing power to

one of the chains. According to Bitcoin’s founder Satoshi Nakamoto (2008), “[the proof-of-

work] solves the problem of determining representation in majority decision making. (...)

Proof-of-work is essentially one-CPU-one-vote.”

Nakamoto’s vision on blockchain governance apparently did not anticipate that block

mining would become a specialized activity. The emergence of mining as an important

economic activity has led to the development of an ecosystem of industries that supply

goods and services to miners. These goods and services providers are also stakeholders of

the blockchain community, and they can affect the governance of the blockchain. They have

economic interests to push for rules and protocols that increase demand for their products,

raising their profitability. Will the emergence of such stakeholders have a substantial effect

on blockchain governance? If so, what factors determine their importance? Will Nakamoto’s

vision on blockchain governance be preserved?

In this paper, we develop a theory of blockchain governance that addresses these ques-

2There are some exceptions. An example of centralized governance in distributed blockchains is the
“delegated proof-of-stake”system, which is used by EOS, among others. In such a system, stakeholders vote
for delegates who then directly monitor the blockchain.

3The second most popular system is called proof-of-stake. We briefly discuss proof-of-stake in Section 8.
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tions. Our main result is that the proof-of-work system may lead to a situation where the

governance of the blockchain is captured by a large corporate stakeholder.

In our model, we analyze the two-way interactions between blockchain governance and

the market structure of the industries in the mining ecosystem. Most of mining is performed

not by CPU, but by specialized equipment that uses application-specific integrated circuits

(ASIC), which are chips designed to perform a single function: block mining. Examples of

mining services include services sold by mining pools, which are essentially companies that

sell insurance to miners, and cloud mining, through which miners can mine blocks without

the need to own mining equipment.

Consistent with what we observe empirically in proof-of-work blockchains such as Bit-

coin, in our model the proof-of-work system creates a mining ecosystem with specialized

equipment producers and mining pool operators. We show that, in this ecosystem, a single

firm dominates the market for specialized mining equipment. The dominant equipment pro-

ducer thus has incentives to foster competition in the mining pool services market, because

lower prices for pool services make mining more attractive and thus increase the demand for

mining equipment. The equipment producer can lower prices for pool services by entering

the pool services market. Our model then predicts that the equipment producer is also a

large player in the mining pool services market. Since the managers of the mining pools

decide which blocks to mine, by controlling a large share of the mining pool market the

equipment producer has a disproportionate influence on the governance of the blockchain.

That is, the governance of the blockchain is captured by a large corporate stakeholder.

The model is as follows. Mining requires computational power to generate tentative

solutions to the mining puzzle. Each tentative solution is called a hash. By making ex ante

investments in R&D, firms can develop the ability to produce specialized equipment that

delivers more hashes per unit of time (the hash rate) than the existing available technology

(e.g. CPU or GPU). Hash rate is a homogeneous good. The combination of ex ante sunk

R&D costs and a homogeneous good creates a first-mover advantage: A firm that enters

early in this market is likely to remain as a profitable incumbent. Even a small entry cost

may be suffi cient to deter further entry (Stiglitz, McFadden, and Peltzman, 1987).

Mining pools offer differentiated services. Pools differentiate themselves in a number

of attributes, such as the method of payment, software used, technical specifications, size,

and geographic location. In the model, miners are heterogeneous in their preferences over
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mining pool attributes, and differentiated mining pools compete for miners by choosing

fees. All else constant, lower pool fees leave more surplus to miners, making mining a

more attractive activity. Lower fees provide incentives for more agents to become miners,

thus increasing demand for specialized mining equipment. That is, the equipment producer

and the mining pools are “complementors,” in the sense of Brandenburger and Nalebuff

(1996). The equipment producer benefits from lower pool fees by selling more equipment.

The equipment producer thus has incentives to “squeeze”the mining pools, that is, to take

actions that would reduce profits in the pool services market (see Farrell and Katz, 2000).

We consider two types of profit squeezes. First, if the equipment producer already owns

and operates a mining pool, it competes more aggressively with the other mining pools,

resulting in a lower average fee in that market. Second, an equipment producer that does

not own a mining pool has strong incentives to enter that market. In either case, the

conclusion is that the equipment producer ends up controlling a large share of the mining

pool market. The dominant equipment producer thus controls a significant fraction of the

hash rate, which gives the producer a disproportionate influence on the governance of the

blockchain.

We show that the equipment producer has incentives to control a large share of the pool

market even if there is no stakeholder disagreement about how the rules of the blockchain

should change. That is, blockchain governance capture is a by-product of the equipment

producer’s incentives to squeeze the profits of the mining pools. If other stakeholders disagree

with the equipment producer, the latter has an additional motive for acquiring control over

votes: the equipment producer now wants to steer decisions towards its preferred direction.

We show that, in this case, the equipment producer not only controls a large share of the

mining pool services market but may also choose to self-mine (i.e., proprietary mining of

blocks) in order to acquire a larger share of the votes. Interestingly, self-mining occurs in

equilibrium even if the equipment producer has no comparative advantage at mining.

There is a growing theoretical literature on the economics of cryptomining. Budish

(2018) shows that proof-of-work is a very costly system for sustaining trust; in order for

honest behavior to be incentive compatible, the cost of an attack (which is a flow) has to

be higher than the benefit from attacking the blockchain (which is a stock). Ma, Gans, and

Tourky (2018) analyze competition among miners in proof-of-work blockchains as a standard

model of R&D racing. Huberman, Leshno and Moallemi (2017) develop a model of mining
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that can be used to determine the equilibrium value of Bitcoin transaction fees. In all of

these models, the equilibrium number of miners is determined by a free-entry condition.

Following this literature, in this paper we use a similar baseline model of mining in which

the equilibrium number of miners is also determined by free entry. Also related to our work

is Cong, He, and Li (2018), who model how competition among pools affects equilibrium fees

and pool sizes. We differ from this literature by modelling a mining ecosystem that includes

miners, mining pools, and equipment producers. We also differ from the previous literature

by focusing on the governance of blockchains.

Some previous theoretical work also focuses on the economic limitations of the blockchain

technology. Biais, Bisière, Bouvard, and Casamatta (2018) study competition among min-

ers in proof-of-work blockchains as a coordination game and show that hard forks may be

sustained in equilibrium. Arruñada and Garicano (2017) study the trade-off between coor-

dination and the protection from expropriation in blockchain platforms. Abadi and Brun-

nermeier (2018) show that ledgers cannot simultaneously attain three desirable properties:

correctness, decentralization, and cost effi ciency. Cong and He (2018) study the effect of

blockchain technologies on the way in which firms compete with one another.

Our paper incorporates some of the insights found in the industrial organization litera-

ture. Farrell and Katz (2000) show that a monopolist has incentives to enter in the market

for a complementary good in order to squeeze the profits in that market, thus leaving more

surplus to consumers. This surplus then increases the demand for the monopolist’s good.

Similar to our model, the literature on strategic motives for bundling also considers how firms

can leverage their market power in one market to reinforce their market power in another

market (Whinston, 1990; Carbajo, De Meza, and Seidmann, 1990; Nalebuff, 2004).

Our paper is also related to the theoretical literature on the impact of large shareholders

on corporate governance, especially through intervention. Examples include Shleifer and

Vishny (1986), Winton (1993), Zwiebel (1995), Burkart, Gromb, and Panunzi (1997, 2000),

Bolton and von Thadden (1998), Maug (1998), Bennedsen andWolfenzon (2000), Noe (2002),

and Edmans and Manso (2011). See also Edmans (2014) for a review of this literature.
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2. Institutional Details

Since the introduction of Nakamoto’s (2008) version of the blockchain technology, many

different applications have been proposed, such as contracts and corporate record keeping

(Yermack, 2017; Cong and He, 2018). To date, the most developed application of the

blockchain technology is Bitcoin, which is a virtual currency operating through a blockchain.

In 2018, the largest cryptocurrencies were Bitcoin, Ether (Ethereum), XRP (Ripple), Bitcoin

Cash, and EOS.4

2.1. Bitcoin Basics

The Bitcoin blockchain is a public ledger showing the history of all transactions involving

transfers of bitcoins since the creation of the currency. This history is used to determine and

verify the current ownership of each unit (or fraction) of bitcoin. When someone “spends”

bitcoin, they send a message to some Bitcoin nodes (i.e., computers running Bitcoin software)

notifying the occurrence of a particular transaction involving changes in the ownership of

bitcoins. When a node receives information about a transaction, it verifies whether the

transaction is valid by checking it against Bitcoin rules. Transactions are then broadcast to

other connecting nodes, which then repeat the process until all network nodes receive the

relevant information about the transaction.

All full nodes keep a local copy of the whole ledger. The ledger takes the form of a

uniquely ordered chain of blocks; blocks are sets of transactions. The ledger is updated by

the addition of new blocks to the chain. Blocks have a maximum size and, once created,

cannot be changed by deleting, adding or modifying transactions. Blocks are created by

a particular type of nodes, called miners. Miners compete for the right to create a new

block by using their computational power to try to solve a particular mathematical problem.

When a miner succeeds at solving the problem, it creates a block containing a set of recent

transactions and also information that allows others to verify that the miner has indeed found

the correct solution for the mathematical problem. The miner then shares the newly created

block with other full nodes (only some full nodes are miners); all full nodes are able to easily

verify whether or not the solution is correct. When nodes receive a new valid block with the

correct solution, they add that block to their local copy of the blockchain. Because nodes

4See www.coinmarketcap.com.
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are connected to other nodes, information about the updated blockchain quickly propagates

through the network, and nodes sequentially update their copies of the blockchain until every

node (presumably) has the same copy. Miners that had been working on solving the same

problem are then supposed to stop working on that problem and start the process of solving

a new problem associated with the next block.

Anyone who installs a software that “implements”the Bitcoin protocol can use their com-

putational power to “mine”blocks. Although entry in the mining business is unrestricted,

the process of mining is costly. First, the miner must buy or rent hardware. While in the

early years most miners used generic CPU or GPU equipment, currently most mining is

done by specialized hardware (called application specific integrated circuit —ASIC), which

is many times more effi cient than GPUs or CPUs. Second, miners must pay for variable

costs, of which electricity is the most important one. The mathematical problem is solved

by brute force, implying that the probability of a miner being the first to find a solution is

proportional to the amount of computer power —called the hash rate —they allocate to the

process of mining a block relative to the total active hash rate in the Bitcoin mining network.

The Bitcoin algorithm is constantly adjusted so that the average time for successfully mining

a block is about ten minutes. The miner who wins the competition for mining the current

block receives all transaction fees associated with the transactions in the block, plus a fixed

number of newly created bitcoins; in 2018, this number was 12.5 bitcoins. Because winning

miners have to demonstrate that they have found the correct solution, finding the solution

is “proof”that they have “worked”on the problem by directing their hash rate to it. This

system is thus called proof-of-work.

2.2. The Mining Ecosystem

As cryptomining evolved into a specialized economic activity, a number of other goods and

services were created to support miners. The most important of such new activities is the

provision of insurance to miners. Mining is a risky activity: miners pay upfront electricity,

equipment and maintenance costs, but are only rewarded (in cryptocurrencies) if they win

the competition for finding the “lucky hash,”i.e., the solution to the mathematical problem

associated with the current block. The probability of winning such a contest is equal to

the proportion of a miner’s hash rate (the number of hash guesses per second) to the total

hash rate in the network. In 2018, an individual miner who owned a single Bitcoin mining
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machine would expect to wait for decades before mining a single block. Mining pools were

created as an attempt to diversify the risks faced by small miners. Although the term “pool”

suggests some form of cooperative arrangement, mining pools are best described as private

firms that sell insurance to cryptominers. A miner who joins a mining pool directs his/her

hash rate to the pool. Pools compensate their miners with fees that are proportional to the

hash rate they provide. Pool managers then make the decisions concerning which blocks to

mine. Pool owners make profits by retaining part of the rewards from successfully-mined

blocks.

Some firms also specialize in operating mining farms, which are large centers where mining

equipment is stored and monitored. Mining farm operators act as custodians of third-parties’

machines, and usually operate and monitor the equipment. Finally, individuals can also

engage in mining without even owning any equipment: cloud mining services allow anyone

to rent equipment (which is stored in a mining farm) and mine cryptocurrencies.

The largest and most influential player in the Bitcoin mining ecosystem is Bitmain Tech-

nologies. Bitmain is a private Chinese (PRC) company whose main business is the design

of ASIC chips for mining cryptocurrencies and the sale of mining hardware, also known as

“mining rigs.”By 2018, Bitmain was the clear leader in ASIC-based cryptocurrency mining

hardware industry, with about 74.5% of the global market share (Bitmain Prospectus, 2018).

No other company had more than 6% of this market. Bitmain’s share of the market is so

large that many refer to Bitmain as a monopolist. For our purposes, what is important is

that Bitmain has some market power, in the sense of being able to price above marginal

cost. Given that Bitmain changes prices frequently following changes to Bitcoin prices, it

does indeed look as if Bitmain has substantial market power.

Other than ASIC chip design, Bitmain is also a large player in other segments of the

cryptomining ecosystem. Bitmain fully owns and operates two of the largest mining pools,

Antpool and BTC.com, and is also the main investor in another large mining pool, ViaBTC.

Figure 1 shows the Bitcoin hash rate distribution in September 2018. Bitmain also operates

mining farms and cloud-mining services. Bitmain’s voluntary disclosure of hash rate indicates

that the company’s proprietary mining activity was responsible for about 3-4% of all hash

power used for mining bitcoins in 2018. According to the information disclosed in its IPO

documents, Bitmain derived more than 94% of its revenue from sales of mining hardware in

2018.
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Figure 1. Bitcoin Hashrate Distribution (September 2018)

2.3. Bitcoin Governance

At any given point in time there are multiple copies of the Bitcoin blockchain, and, by design,

conflicting versions of the blockchain will coexist. For example, suppose that two miners find

the solution for the same block at about the same time, and forward their blocks to their

respective nearest nodes. Because it takes time for information to percolate the network,

not all nodes will receive the two competing blocks in the same order. Thus, members of the

Bitcoin community will regularly encounter situations in which they need to decide between

two or more different versions of the blockchain. How are such conflicts resolved? The typical

answer is to postulate that the longest chain will eventually win; once it becomes clear that

one chain is longer than all others, miners will abandon other chains and focus their efforts

on the longest one. Blocks recently mined in abandoned chains —“orphan blocks”—are

deemed invalid.

Bitcoin commentators often give the impression that the longest chain solution is a hard

feature of Bitcoin. It is not; it is just a hypothesis. When choosing which chain to sup-

port, participants play a standard coordination game: if everyone is expected to support

version A over B, it is individually optimal to support A. The longest chain selection crite-

rion is intuitive and may serve as a focal point, but in principle other equilibria are possi-

ble. Biais, Bisière, Bouvard, and Casamatta (2018), in what is arguably the first complete

game-theoretical analysis of the mining game, aptly name the longest chain hypothesis the
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blockchain folk theorem. They show that there exist equilibria where a chain might bifurcate

at some date, with two different versions of the blockchain coexisting forever. Although many

Bitcoin experts still deny that such splits can be long lasting, recent evidence indicates that

blockchain splits can be successful and command significant support among miners, such as

the case of Bitcoin Cash, a new blockchain created in 2017 as a bifurcation of the original

Bitcoin blockchain.

A high degree of coordination is necessary for changing the core rules of Bitcoin —what

is called the Bitcoin Protocol. Anyone can propose a change in rules through a Bitcoin

Improvement Proposal (BIP). Such proposals usually have to be vetted by some Bitcoin

developers and then face a “vote” among miners. The proposal itself typically sets the

requirements for agreement and adoption. For example, the proposal may say that a certain

change requires the approval from a super-majority of miners (a typical number is 95%)

during a given period (measured in blocks). Miners signal their support for a proposal by

adding a line to the blocks they solve. Once the threshold is achieved, the proposal is said to

be “locked in,”and it is activated at a predetermined later date. It is important to keep in

mind that this is again not a hard feature; it is possible for proposals to secure support from

a large number of miners and still be dropped. An example was the 2017 proposal called

SegWit2x, which secured support from 100% of miners but was later dropped due to lack of

consensus among different Bitcoin stakeholders.

The term “voting”is used loosely in Bitcoin governance. Sometimes voting means signal-

ing support for a proposal through messages included in blocks. Sometimes it means running

competing software which are ready for future changes should they be agreed, and sometimes

it means the decision to adopt an agreed change by upgrading software and following the new

rules. What is important for our analysis is the fact that miners play a significant role in the

governance of Bitcoin. First, miners are the only ones that can signal support for a particular

BIP through mining blocks. Thus, a BIP that doesn’t secure suffi cient support from miners

is essentially dead, even if other players (e.g., developers, exchanges, wallets, etc.) back it.

Second, miners can collectively choose to support alternative versions of the blockchain by

directing some of their hash power to them. When different groups of stakeholders cannot

coordinate on a single set of rules, they can direct their hash power to competing versions of

the blockchain, creating what is called a hard fork. Leading examples of hard forks that led

to currency splits include Bitcoin Cash (August 2017), Bitcoin Gold (October 2017), Bitcoin
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Private (February 2018), and the November 2018 “hash wars”that led to the split between

Bitcoin Cash ABC and Bitcoin Cash SV.

The outcome that blockchain stakeholders fear the most is a hard fork. Despite this fact,

hard forks have occurred, with very damaging consequences, as evidenced by the Bitcoin

Cash hash wars in late 2018. Due to its tight grip on the Bitcoin ecosystem, many believe

that Bitmain has an outsized influence on the governance of Bitcoin and other related cryp-

tocurrencies, including the ability to create and support hard forks (as an example, Bitmain

took the side of Bitcoin Cash ABC, which is the currency widely believed to have “won”the

hash wars). Samson Mow (CSO of Blockstream) writes:5

“Jihan (Bitmain’s CEO) does have a lot of control for now, and much of that

is simply due to mining centralization. As Bitmain is so vertically integrated,

from selling ASICs, to operating mining farms, to running mining pools, he can

prevent network upgrade and attempt to hijack the Bitcoin brand with things like

Bitcoin Cash.”

3. Setup

3.1. A Simple Model of Mining

For our benchmark model, we use an off-the-shelf model of bitcoin mining (here we follow

Budish, 2018). A period is defined as the time it takes to mine a block.6 At the beginning of

each period, players called miners rent units of computational power that allow them to try

to mine a block. Let c > 0 denote the rental cost of the equipment per unit of computational

power. In each period, miners who wish to be active pay c in advance for the equipment.

For now, we assume that the mining equipment (also known as mining rigs) is a general

purpose CPU/GPU chip, thus its rental price c is determined in a larger market; the size of

the bitcoin mining industry does not affect c.

Let s denote the net direct surplus from mining, including nonpecuniary benefits (e.g.

speculative beliefs, preferences for gambling, risk aversion) minus electricity and other costs.

The net direct surplus s excludes the rental cost of the equipment. We normalize miners’

outside payoffto zero and assume c > s (otherwise an infinite amount of miners would enter).
5http://fortune.com/2017/08/25/bitcoin-mining/
6We assume that the level of diffi culty does not change throughout the period.
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Let n denote the number of units of computational power that are active in the mining

business. Individual miners are small: for simplicity, we assume that each miner can buy at

most one unit of computational power. Thus, n can be also interpreted as the number of

miners who are active in a given period.

Let r denote the reward to the miner who wins the mining competition. We represent

the period payoff of an active individual miner by

U =
r

n
− c+ s. (1)

For now, we take both c and s as exogenous. Later we will endogenize each term separately.

Free entry of miners determines the equilibrium number of miners (for simplicity, here

we ignore integer constraints):

n∗ =
r

c− s. (2)

Free entry implies that all rents from mining are dissipated by competition among miners

(see e.g. Budish, 2018). Equation 2 determines the total amount of computational units in

the network, n∗, that is, the total hash rate for a given mining period.

3.2. Blockchain Governance

A blockchain may have many stakeholders. Stakeholders can be users, miners, or companies

in the blockchain ecosystem, such as exchanges, wallets, mining pools, etc. Each stakeholder

may have views about the rules of the blockchain. Differences in views can arise due to

differences in preferences, payoff structures, and information.

Let i denote a generic blockchain stakeholder. At the end of each period the blockchain

network collectively chooses between two proposals: A and B, which represent two different

sets of rules governing the blockchain. For example, A may be a proposal to increase the

maximum block size while B is the status quo. Each stakeholder has a preference for one

of the two proposals; let zi ∈ {A,B} denote stakeholder i’s preference. If stakeholder

i’s preferred proposal is chosen, they receive utility bi > 0, otherwise they receive zero.

Although we assume that the private benefit bi is exogenous, in reality such benefit could arise

endogenously, for example if the proposal refers to the adoption of a particular technology

that benefits some types of stakeholders more than others.
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A stakeholder’s influence over the governance of the blockchain is proportional to the

hash rate they control. Suppose that stakeholder i controls hash rate ni. Let ϕi = ni
n∗ denote

the proportion of the overall hash rate controlled by stakeholder i. We denote the probability

that stakeholder i’s preferred proposal is implemented by I
(
ϕi, ϕ−i

)
, where ϕ−i is the vector

of all other hash rate ratios for all other stakeholders. We assume that this influence function

is non decreasing in ϕi, that is, a stakeholder that controls a larger share of the hash rate has

(weakly) larger influence on the governance of the blockchain. Given I
(
ϕi, ϕ−i

)
, i’s expected

payoff from the choice of proposals is biI
(
ϕi, ϕ−i

)
. We choose to model the decentralized

governance system in reduced form for expositional simplicity only. In Section 7, we provide

a full microfoundation for the influence function I
(
ϕi, ϕ−i

)
.7

For simplicity, we ignore the effect that influence over proposals may have on a stake-

holder’s decision to become a miner. Formally, we can either assume that private benefits

are suffi ciently small (i.e. bi → 0) or, alternatively, that small individual miners have zero

probability of being pivotal in equilibrium:

I

(
1

n∗ + 1
;

1

n∗ + 1
, ...,

1

n∗ + 1

)
− I

(
0;

1

n∗
, ...,

1

n∗

)
= 0. (3)

For the remaining of the paper, we keep the assumption that individual miners do not

consider their impact on proposals when deciding to become a miner.

4. A Model of Mining with Specialized Equipment

We now modify the model by introducing a new type of player: Equipment producers en-

dowed with a technology to produce mining equipment at a constant unit cost c < c. This

equipment — also called an application-specific integrated circuit (ASIC) — is specific to

mining some particular cryptocurrencies and cannot be used for any other purpose.

Suppose there are K equipment producers, indexed by k ∈ {1, ..., K}. For simplicity, we
assume that b1 = ... = bK = 0, that is, equipment producers enjoy no private benefits from

the choice between proposals A or B; we relax this assumption only in Section 7. Let nk

denote the amount of computational power sold by firm k to individual miners and let n′k

denote the amount of computational power used by firm k for self-mining. Firm k’s payoff

7Our approach here resembles that of Becker (1985), who models political influence by means of a reduced-
form influence function.

13



from self mining per unit of computational cost is:

Uk =
r

K∑
k=1

(nk + n′k)

− c+ s′k, (4)

where s′k is firm k’s net direct surplus from mining. Again we assume c > max {s, s′1, ..., s′K}.
Let t ∈ {0, 1, 2, ...,∞} denote a mining period. At t = 0, there are no incumbents in the

market for specialized mining equipment. At t = k, exactly one firm —Firm k —has the

option to enter this market by paying an once-and-for-all sunk cost ι. That is, Firm k has a

first-mover advantage with respect to all firms such that k′ > k. In particular Firm 1 has a

first-mover advantage over all other firms.

To study the equilibrium in this market, we work backwards: we first solve for the

equilibrium taking as given a particular market structure (single versus multiple producers),

and then we analyze the decision to enter into this market.

4.1. Single Equipment Producer

If there is a single incumbent equipment producer —Firm k —at time t ≥ k, we can rewrite

(4) as

Uk =
r

nk + n′k
− c+ s′k. (5)

The equipment producer chooses a price p for its machines. Because the producer can also

self mine, the free-entry condition for individual miners becomes

r

nk + n′k
−min{p, c}+ s ≤ 0, (6)

that is, miners either enter with zero profit, in which case they buy the cheapest equipment

available and pay min{p, c}, or they do not enter. Note that if p > c, then p does not affect

the entry condition for individual miners, because they would not buy equipment from Firm

k. Thus, without loss of generality, we assume that the equipment producer will not choose

p > c. With this simplification, we can write the equipment producer’s problem as

max
p,nk,n

′
k

πk = (p− c)nk +

(
r

nk + n′k
− c+ s′k

)
n′k, (7)
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subject to

r

nk + n′k
−min{p, c}+ s ≤ 0 (8)

p ≤ c (9)

nk, n
′
k ≥ 0. (10)

The producer’s profit contains two terms: the profit from selling equipment (if any) and the

profit from self-mining. The next proposition characterizes the equilibrium in this market

when there is a single equipment producer.

Proposition 1 The optimal price is p∗ = c. There are three cases:

1. If s′k < s, then n∗k = r
c−s and n

′∗
k = 0.

2. If s′k > s, then n∗k = 0 and n′∗k = r
c−s .

3. If s′k = s, then any n∗k and n
′∗
k such that n

∗
k + n′∗k = r

c−s is a solution.

This proposition illustrates three key results. First, the optimal price is c. The equipment

producer would like to sell few units of computational power at a very high price, due to

the fact that miners impose an externality on one another, and thus total surplus decreases

with the number of miners. However, the producer cannot charge a price that is higher than

the next-best alternative, which is priced at c. Second, the equipment producer self-mines

only if s′k > s, because whoever has a (non-transferrable) comparative advantage at mining

(i.e., the party with higher net direct surplus) does all the mining. Third, the total number

of miners is always determined by the entry condition for individual miners, even when the

equipment producer is the sole miner.

4.2. Competition among Equipment Producers

We now consider the case of multiple incumbent equipment producers. For simplicity, we

assume that there are only two incumbent firms (call them k and l); the extension to more

than two firms is straightforward. If the equipment producers sell to individual miners, they

compete with one another by setting prices. If they self mine, they both enjoy the same net

direct surplus s′k = s′l = s′.
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Proposition 2 There are three cases:

1. If s′ < s, then n∗k + n∗l > 0 and n′∗k = n′∗l = 0; both firms have zero profit.

2. If s′ > s, then n∗k = n∗l = 0 and n′∗k = n′∗l > 0; both firms enjoy positive profits.

3. If s′ = s, then there are multiple equilibria, such that if n∗k + n∗l > 0, profits are zero,

and if n∗k + n∗l = 0, profits are strictly positive.

In Case 1, the equipment firms have no special advantage at mining, thus in equilibrium

they both sell all of their equipment. Because they compete by setting prices, in equilibrium,

prices must equal marginal cost, and thus profits are zero. In Case 2, the equipment firms

enjoy larger direct surplus than individual miners, thus in equilibrium both firms self-mine

and do not sell equipment to individual miners. The equipment firms compete with one

another by setting quantities and thus they enjoy positive profits in equilibrium.8 Note also

that in any equilibrium in which the amount of computational power sold is strictly positive,

profits are zero for both firms and s′ ≤ s.

4.3. Entry in the Specialized Equipment Industry

We now consider the decision to enter into the mining equipment market. At t = 0, there

are no incumbents in the market for specialized mining equipment. At t = 1, Firm 1 has the

option to enter this market by paying an once-and-for-all sunk cost ι. At t = 2, Firm 2 can

now enter after paying the same cost ι, and so on for periods t > 2. That is, Firm 1 has a

first-mover advantage over all other firms.

We have the following result:

Proposition 3 In any equilibrium with a positive number of individual miners, at most one

specialized equipment producer enters the market.

The intuition is as follows. Because the specialized equipment is a homogeneous good,

price competition drives profits to zero. Unless a firm expects to have positive profits in

this market, it will not pay a positive sunk cost to enter. Thus, the firm with a first-

mover advantage is the only one that could enter the market in equilibrium (as in Stiglitz,

McFadden, and Peltzman, 1987).

8Dimitri (2017) models competition among non-atomistic miners as Cournot competition and also shows
that miners have positive profits in equilibrium.
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For the remaining of the paper, we assume that the equipment producer does not have

a comparative advantage in mining, that is we set s′ < s. From Proposition 2, if there are

two incumbent producers, there is a positive number of individual miners and profits are

zero. Proposition 3 thus implies that there is only one incumbent equipment producer in

equilibrium. From Proposition 1, we then have that the equipment producer does not self

mine.

4.4. Mining with Specialized Equipment: Summary

The model in this section illustrates a number of interesting features of the game played

between equipment producers and individual miners. It is useful to summarize its main

lessons:

(i) Because ASIC chips are essentially a homogeneous good, even a very small sunk

cost could prevent entry when there already is an incumbent, thus naturally leading to a

structure with a single first-mover incumbent that makes positive profits. This is in line with

the observed market structure in the Bitcoin ecosystem: the leading cryptocurrency mining

ASIC producer —Bitmain Technologies — has about 74.5% of the market for specialized

equipment. Bitmain entered this market early in 2013; all of its current competitors entered

the market more recently and are all very small.

(ii) The producer of specialized equipment will charge as much as the next best alternative

(e.g. GPU) for each unit of computational power, thus extracting from miners all the surplus

created by its more effi cient equipment. The equipment producer is a constrained monopolist.

If it were unconstrained, it would always like to sell fewer machines at higher prices.

(iii) The equilibrium amount of computational power (i.e., the hash rate used for mining)

is the same with or without the specialized equipment. Thus the deadweight cost frommining

is lower in an equilibrium with specialized equipment.

(iv) A specialized equipment producer has a comparative advantage at mining in the

sense that it faces lower equipment costs than individual miners. However, this comparative

advantage is transferrable: miners can buy the more effi cient equipment from the producer.

Thus, this type of comparative advantage does not affect the identity of the miners. Compar-

ative advantages that are non-transferrable (i.e. reflected in s and s′, such as local electricity

costs) determine who becomes active miners.9

9With cloud mining, even comparative advantages in electricity costs are transferrable.
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5. A Model of Mining with Mining Pools

We now introduce a third type of player: Mining pools. Pools differentiate themselves in a

number of attributes, such as the method of payment, software used, technical specifications,

size, and geographic location. We thus consider a model in which miners are heterogeneous

in their preferences over mining pool attributes, and differentiated mining pools compete for

miners by choosing fees. At each mining period t, let υij denote i’s valuation of the unique

combination of attributes offered by pool j.10 Let fj denote the fee charged by pool j. For

each miner i, their surplus from joining pool j is thus

sij = υij − fj. (11)

We assume that miners do not know their exact valuation υij before deciding whether

to enter or not the mining market. To consider the simplest scenario possible, we assume

that, for a given pool, valuations are independent and identically distributed, with density

function g(υ) over the support [υ, υ], with υ > 0, υ finite, cdf G(·) and mean µ. As in the
previous section, we assume µ < c, otherwise there would be an infinite number of active

miners.

For simplicity, we consider the case in which there are only two incumbent mining pools.

We assume that one of the mining pools is fully owned by the equipment producer, which

we call Pool 1. In Section 6 we analyze players’decisions to enter the mining pool business,

including the equipment producer’s decision to enter this market.

When choosing between proposals at the end of the period, each mining pool has the

right to vote on behalf of all members of their pool. However, in practice pool managers

may have limited influence on the votes in their current pools, either because pools may offer

miners the option to express their preferences (e.g., as is case with Slushpool) or because

miners may withdraw their hash rate if they disagree with the direction proposed by their

mining pool manager. We assume that pool managers have control over a fraction α ∈
(
0, 1

2

)
of the votes in their pools; a fraction (1− α) of the votes in a pool are controlled by the

individual miners. One interpretation is that α measures the proportion of stakeholders

who are indifferent towards voting, possibly because they are indifferent between the two

10As there are no dynamic interactions in the game played by pools, we drop time subscripts to save on
notation.

18



proposals (i.e., if bi → 0) or because they understand they cannot affect the outcome of the

vote (i.e., they know they are not pivotal). We assume that α is less than 1
2
to make sure

that no mining pool can control more than 50% of the votes. This assumption is immaterial

for the qualitative results we derive.

For each period t, the time line of actions is as follows.

Date 1 : Pools choose their fees, f1 and f2, simultaneously.

Date 2 : Miners enter the mining market and rent computational power from the producer

at price c (see Proposition 1).

Date 3 : Miners learn their υij and then choose which pool to join.

Date 4 : Voting on proposals occurs and payoffs are realized.

To solve for the equilibrium, let us first consider a candidate equilibrium with a pair of

fees (f ∗1 , f
∗
2 ). At Date 4, let ϕj (f ∗1 , f

∗
2 ), j = 1, 2, denote the equilibrium proportion of hash

rate controlled by Pool j. The probability that Pool 1’s preferred proposal is adopted is

I (f ∗1 , f
∗
2 ) ≡ I (ϕ1 (f ∗1 , f

∗
2 ) , ϕ2 (f ∗1 , f

∗
2 )).

At Date 3, after miner i discovers υij for each pool j ∈ {1, 2}, the miner chooses which
pool to join. We assume that υ is suffi ciently high so that, in equilibrium, a miner always

prefers one of the two pools to mining without a pool.11 Thus, the miner’s problem at Date

3 is to:

si = max
j∈{1,2}

υij − fj. (12)

Our modeling of the mining pool market is thus analogous to traditional random-utility

discrete-choice differentiated goods models that are common in the industrial organization

literature (e.g. Salop and Perloff, 1986).

At Date 2, miners do not yet know their types, thus they also do not know which fees

they would pay after entry. The probability that miner i will choose Pool 1 over Pool 2 is

Pr(υi1−υi2 ≥ f ∗1 −f ∗2 ). Because all valuations are identically and independently distributed,

the distribution of υi1− υi2 is symmetric with zero mean, with support [− (υ − υ) , (υ − υ)].

Let H(.) denote the cumulative distribution function for υi1 − υi2 (note that H(0) = 0.5).

At Date 2, let E (si) denote the expectation of si as defined in (12). Because all miners

11For example, it can be shown that if fees are strategic complements, a suffi cient condition for the miners
never to mine alone is υg (υ) ≥ c−µ

c−µ+υ .
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are identical at this date, then E (si) = µ− E[f ∗], where

E[f ∗] ≡ f ∗1 (1−H(f ∗1 − f ∗2 )) + f ∗2H(f ∗1 − f ∗2 ). (13)

Note that, in equilibrium Pool 1’s market share is 1 − H(f ∗1 − f ∗2 ). This implies that

ϕ1 (f ∗1 , f
∗
2 ) = α [1−H(f ∗1 − f ∗2 )] and ϕ2 (f ∗1 , f

∗
2 ) = αH(f ∗1 − f ∗2 ).

Because we have assumed s′ < s = µ − E[f ∗], Proposition 1 implies that there is no

self-mining in equilibrium (n′1 = 0) and p = c. The number of miners n1 = n∗ who decide to

enter at this date is determined by the free entry condition as in (6):

n∗ =
r

c− µ+ E[f ∗]
. (14)

At Date 1, mining pools anticipate the behavior of miners as given in (14), and choose

fees simultaneously to maximize their profits. Here we assume that pools care only about

their profits, i.e., we assume they have zero private benefits (b1 = b2 = 0). We relax this

assumption in Section 7.

Pools’problem is to

max
f1

Π1 (f1, f2) + π (f1, f2) =
rf1 (1−H(f1 − f2))

c− µ+ e (f1,f2)
+

r (c− c)
c− µ+ e (f1,f2)

, (15)

max
f2

Π2 (f1, f2) =
rf2H(f1 − f2)

c− µ+ e (f1,f2)
, (16)

where

e (f1,f2) ≡ f1 (1−H(f1 − f2)) + f2H(f1 − f2). (17)

The next proposition presents our main result:

Proposition 4 In any equilibrium, the equipment producer is the stakeholder with the great-

est influence on the governance of the blockchain.

This proposition shows that when the equipment producer owns a mining pool, it offers

the lower fee and its pool is larger than the pool of its competitor. Because the equipment

producer has the largest market share, it is the player with the greatest influence on the

governance of the blockchain. Intuitively, this result arises because the equipment producer

benefits more from a larger number of miners than does an independent pool. The equipment
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producer benefits not only from having more customers in the pool market but also from

higher demand for its equipment. Thus, the producer has incentives to squeeze the profits

in the pool market; it does so by lowering prices so that more agents enter the mining

market and rent computational power from the equipment producer. Because we assume

that mining pool managers derive no private benefits from the adoption of specific proposals,

this proposition implies that blockchain governance capture is a by-product of the equipment

producer’s incentives to squeeze the profits of the mining pools.

Proposition 4 shows that market power in the market for mining equipment spills over

to the market for mining services. Conditional on being an incumbent in the pool market,

the equipment producer always operates the largest mining pool. If the equipment producer

is not an incumbent in the pool market, it will have strong incentives to enter this market,

as we show in Section 6.

Proposition 4 also holds in more general settings. Under reasonable assumptions, the

result that the equipment producer operates the largest mining pool can be extended to

cases with different functional forms. To see this, suppose we assume some generic functional

forms for π, Π1 and Π2. The assumptions we make in the next Proposition are stronger than

what we need; we make them to simplify the argument:

Proposition 5 Let π (f1, f2) denote the profit in the market for equipment and let Π1 (f1, f2)

and Π2 (f1, f2) denote the profit functions in the pool market, for firms 1 and 2 respectively.

Assume the following:

1. Π1(f1, f2) = Π2(f2, f1) (pool profit functions are symmetric),

2. ∂π
∂f1

< 0 (lower fees in the pool market increase profit in the market for mining equip-

ment),

3. ∂2Π1(f1,f2)
∂f1∂f2

, ∂
2Π2(f1,f2)
∂f1∂f2

> 0 (pool fees are strategic complements), and

4. ∂2Π1(f1,f2)

∂f21
, ∂

2Π2(f1,f2)

∂f22
< 0 (the pool profit function is globally concave).

Then, the equipment producer is the stakeholder with the greatest influence on the gover-

nance of the blockchain.
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6. Entry in the Mining Pool Market

We now consider the entry decision in the mining pool market. We start at some time t when

there is only one incumbent firm in the mining pool market. This firm is an independent

mining pool.

At period t, we modify slightly the time line to allow for entry:

Date 0 : There is one incumbent mining pool. A second pool can enter this market by

paying a once-and-for-all sunk cost κ.

Date 1 : Pools choose their fees simultaneously.

Date 2 : Miners enter the mining market and rent computational power from the producer

at price c.

Date 3 : Miners learn their υij and then choose which pool to join.

Date 4 : Voting on proposals occurs and payoffs are realized.

To simplify the analysis, here we assume that only one firm may enter at time t and, if

it does, no other firm may enter in subsequent periods. The potential entrant is either the

equipment producer or an independent pool.

We assume that there are two ownership structures upon entry. The choice between the

two ownership structures is only relevant for the equipment producer. The first ownership

structure is such that the equipment producer firm has full control rights and cash flow

rights over the pool. In the second ownership structure, the equipment producer has full

cash flow rights but no control rights over the pool. If it enters with full control rights, the

equipment producer will set fees as in (25), that is, it internalizes the effect of the fees on

the mining equipment profit. If instead it enters without control rights, the pool manager

maximizes profits in the pool market only, without taking into account any side effects on

the equipment market.12

The option to choose between the two different modes of entry matters. In the previous

sections, we have only considered the more natural case in which the equipment producer has

full control rights over the choices made by its pool. In some cases, however, the producer

may prefer not to have control over fees, as we show in the next proposition:

12Entering without control is a realistic possibility. For example, Bitmain Technologies is the largest
financial investor in ViaBTC pool, but control rights are concentrated in the hands of few owners not related
to Bitmain.
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Proposition 6 The equipment producer may be better off entering the pool market without

control over fees than entering with control over fees.

To understand the intuition, suppose that the equipment producer can set the prices of

its own pool. Because the producer has incentives to squeeze the profits of the other pool,

the producer will choose a price that is lower than the price chosen by an independently

managed pool. But this lower price leads to losses for the equipment producer in the pool

market, that is, the producer “self-squeezes”its own profit. If the loss in the pool business

is too large, the equipment producer may prefer to commit to choosing a higher pool fee.

Entering without control is a way of making such a commitment.13

The possibility demonstrated by Proposition 6 is however unlikely to be of practical

importance if private benefits are large. This is because by entering the pool market without

controlling the mining pool, the equipment producer would also surrender its right to vote

on proposals. If such rights are suffi ciently valuable, the equipment producer would always

prefer to enter with control rights.

We now make the following assumption:

Assumption 1 Competition lowers prices:

(c− µ)

(
1

h(0)
− 2υ

)
≤ υ

(
2υ − 1

2

)
. (18)

Condition (18) is necessary and suffi cient for equilibrium fees to fall after the entry of a

new pool. Alternatively, we could have assumed that pool fees are strategic complements,

which is a suffi cient (but not necessary) condition for competition to lower prices. However,

strategic complementarity is a stronger assumption than condition (18), thus our results go

through even in the absence of strategic complementarity.

Proposition 7 If condition (18) holds, the equipment producer has stronger incentives to

enter the mining pool market than an independently owned pool does.

This proposition shows that, as long as more competition implies lower prices, for any

constellation of parameters for which an independent firm finds it profitable to enter the pool

13Gawer and Henderson (2007) study Intel’s use of organizational structure and processes as a means to
commit not to squeeze the profits of independent suppliers and thus induce effi cient R&D investment in the
complementary goods.
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market, the equipment producer also profits from entering this market. There are parameter

values for which only the equipment producer profits from entering.

The intuition for Proposition 7 is as follows. If Assumption 1 holds, entry by any type

of firm reduces the average fee, thus increasing the demand for mining equipment. Only

the equipment producer internalizes this effect, thus the producer is willing to absorb lower

profits in the pool market.

In the proof of Proposition 7, we show that the equipment producer’s incentive to enter

relative to an independent entrant is

RI ≡ r (c− c) f 0 − f ∗
(c− µ+ f ∗) (c− µ+ f 0)

,

where f 0 is the equilibrium fee without entry and f ∗ is the equilibrium fee after entry by an

independent firm. We also show that f 0 and f ∗ are independent of r and c.

We thus have the following comparative statics:

Result 1 The equipment producer has stronger incentives to enter when it is more effi cient

(i.e., lower c):
∂RI

∂c
= − f 0 − f ∗

(c− µ+ f ∗) (c− µ+ f 0)
< 0

Result 2 The equipment producer has stronger incentives to enter when mining rewards are

higher (i.e., higher r).

∂RI

∂r
= (c− c) f 0 − f ∗

(c− µ+ f ∗) (c− µ+ f 0)
> 0

These two results show that the equipment producer’s incentives to enter the pool market

become stronger as the blockchain becomes more successful, that is, as crypto prices increase

(higher r) and the equipment producer becomes more effi cient (lower c).

7. Voting on Proposals

In this section, we provide an explicit model of voting on proposals. This model is meant as

a microfoundation for the influence function I
(
ϕi, ϕ−i

)
introduced in Subsection 3.2.

We assume that proposals are chosen by a majority rule, in which only active miners

can vote. In practice, “voting”occurs by miners directing their hash rate to one of the two
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competing chains; here we assume that the minority chain is abandoned.14 The aggregate

distribution of miners’ preferences over proposals is unknown until Date 4, when voting

happens. Let ρ denote the proportion of stakeholders such that zi = A. For simplicity only,

we assume that ρ is uniformly distributed over the support [0, 1]. That is, at each period t,

a new ρ is independently drawn from a uniform distribution. The realized value of ρ is never

directly revealed, but it might be inferred ex post from the voting outcome.

We first consider a fully decentralized benchmark, that is, there are only individual

miners and no mining pools. Suppose that the number of active miners is n; active miners

are drawn randomly from the population of stakeholders. For simplicity, we assume that n is

suffi ciently large that we may think of each miner as having measure zero (alternatively, we

could assume that there is a continuum of mass n of miners). By the Law of Large Numbers,

the proportion of active miners such that zi = A is also ρ. Because of majority voting, and

assuming that all active miners vote according to their preferences, proposal A is chosen

only if ρ ≥ 1
2
.

In contrast with the fully decentralized benchmark, a mining pool may have a direct

effect on the outcome of the vote. As explained in Section 5, pool managers have control

over a fraction α ∈
(
0, 1

2

)
of the votes in their pools. Here, in contrast with Section 5, we

assume that bj > 0, for pool j = 1, 2.

We proceed in three steps. First, we take market shares as given and solve for the voting

game. Second, we endogenize market shares as in Section 5. Finally, we also consider the

case in which the equipment producer may find it optimal to self-mine.

7.1. Exogenous Market Shares

As in Section 5, there are two incumbent mining pools: Pool 1, which is owned by the

equipment producer, and Pool 2, which is an independent pool. In this subsection, we take

market shares as exogenously given.

Let 1 − H denote Pool 1’s market share and H denote Pool 2’s market share. Because

the mining pools are not atomistic, their preferences for proposals can affect the outcome

of the vote. As mining pool managers are also stakeholders, they have their own private

benefits (that is, bj > 0).

14In reality, if no chain is abandoned, then a blockchain splits into two new chains.
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Suppose that the fully decentralized outcome is different from what Pool 1 would choose.

What is the probability that Pool 1’s proposal is adopted in such a case? We need to consider

two cases:

Case 1. Suppose that the majority of stakeholders prefer proposal A, that is, ρ ≥ 1
2
.

Suppose that Pool 1 and Pool 2 prefer proposal B. Then, the probability that Pool 1’s

preferred proposal wins the vote is

Pr

(
(1− α) ρ ≤ 1

2
| ρ ≥ 1

2

)
=

1
2(1−α)

− 1
2

1
2

=
α

1− α. (19)

Similarly, if the majority prefers proposal B (ρ ≤ 1
2
), and both pools prefer A, then the

probability that Pool 1’s preferred proposal wins the vote is

Pr

(
α + (1− α) ρ ≥ 1

2
| ρ ≤ 1

2

)
=

α

1− α. (20)

Case 2. Suppose that the majority of stakeholders and Pool 2 prefer proposal A. If Pool

1 prefers B, then the probability that Pool 1’s preferred proposal wins the vote is

Pr

(
αH + (1− α) ρ ≤ 1

2
| ρ ≥ 1

2

)
= max

{
α(1− 2H)

1− α , 0

}
. (21)

Similarly, if the majority and Pool 2 prefer proposal B, if Pool 1 prefers A, then the proba-

bility that Pool 1’s preferred proposal wins the vote is

Pr

(
α(1−H) + (1− α) ρ ≥ 1

2
| ρ ≤ 1

2

)
= max

{
α(1− 2H)

1− α , 0

}
. (22)

There are two reasons for decisions to differ from those obtained in the fully decentralized

benchmark. The first one is proxy voting: Because some miners delegate their rights to vote

to the mining pools, pools become non-atomistic and thus can impose their preferences some

times. The importance of proxy voting is measured by α. The second reason is concentration

of voting rights. In our model, since there are only two pools, concentration is minimized

when market shares are equal (i.e., H = 1
2
) and is maximized when a single pool controls all

the market (H = 1 or H = 0).

Note that when H = 1
2
, if there is disagreement among pools the biases cancel each other

out and the fully decentralized outcome obtains.
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7.2. Endogenous Market Shares

We now incorporate voting rights motives into pools’ objective functions. For simplicity

we assume that {z1, z2} — the mining pools’ preferences over proposals — are distributed
independently from the zi’s of the other stakeholders, i 6= 1, 2. Let φ denote the probability

that z1 6= z2.

The influence functions of the pools can be explicitly written as

I (f1, f2) =
1− 2αH(f1 − f2)φ

2 (1− α)
(23)

I (f2, f1) =
1− 2α (1−H(f1 − f2))φ

2 (1− α)
. (24)

At Date 1, mining pools choose fees simultaneously to maximize their payoffs:

max
f1

Π1 (f1, f2) + π (f1, f2) + b1I (f1, f2) (25)

max
f2

Π2 (f1, f2) + b2I (f2, f1) , (26)

where Πj (f1, f2), j = 1, 2, and π (f1, f2) are given by (15) and (16).

In Section 5, we show that equilibrium market shares are asymmetric, and that Pool 1

—the equipment producer —has the larger market share. The next proposition shows that

this result continues to hold, unless b2 is suffi ciently larger than b1.

Proposition 8 If b1 ≥ b2, in any equilibrium, the equipment producer is the stakeholder

with the greatest influence on the governance of the blockchain.

As in Proposition 4, the equipment producer (Pool 1) has a purely economic motive for

setting low fees: Lower fees attract more miners to the market and thus increase demand for

mining equipment. Now, both the equipment producer and the independent pool (Pool 2)

have an additional governance motive for setting lower fees: They both want to gain market

share to increase the probability of winning the vote on the proposal. Because the strength

of this last motive is proportional to their private benefits, unless b2 is suffi ciently larger than

b1, the equipment producer’s economic incentives to lower fees will dominate, implying that

in equilibrium the equipment producer charges lower fees and thus has the larger share of

the pool market.
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Although we have assumed that private benefits are exogenous, it is reasonable to ex-

pect b1 ≥ b2 in reality. For example, some proposals may affect the equipment producer

directly, such as changes that make the protocol less compatible with the existing special-

ized equipment. Because the equipment producer controls a large share of the whole mining

ecosystem, there are many more ways in which proposals can directly affect its payoff than

that of independent pools.

As both b1 and b2 converge to zero, equilibrium market shares converge to those in

Proposition 4. If b1 is small but not exactly zero, the equipment producer will still have a

disproportionate impact on governance of the blockchain.

7.3. Self-Mining

We have assumed that the equipment producer has no comparative advantage at mining,

that is, s′ is suffi ciently small. Proposition 1 then implies that the equipment producer

does not self mine. In the next proposition, we show that this result no longer holds if the

equipment producer’s private benefits of control are suffi ciently large.

Proposition 9 In any equilibrium, a suffi cient condition for the equipment producer to self-

mine is:
b1

2 (1− α)
>
r (µ− s′)
c− µ . (27)

Intuitively, if b1 is suffi ciently large, the equipment producer is willing to give up some

profits in the sales of equipment in order to self-mine and increase the probability that it

wins the vote. To understand the right-hand side of (27), note that µ−s′ is a measure of the
comparative advantage at mining that individuals miners have over the equipment producer.

As this advantage increases, it would take a larger private benefit to induce the producer

to self mine. Incentives to self-mine are also curbed when mining rewards are high, i.e.,

when r is large. A larger r implies that mining is more attractive, thus there is potentially

more demand for equipment. This increase in potential demand increases the shadow cost of

self-mining. Similar, c−µ is a measure of individual miners’net cost of mining. A lower net
cost of mining increases demand for equipment and thus reduces the equipment producer’s

incentives to self-mine.
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8. Conclusion

In this paper, we develop a model in which the proof-of-work system creates an industrial

ecosystem where miners, mining equipment producers, and mining services providers have

conflicting interests. Our model implies that the emergence of such stakeholders has a

substantial effect on the governance of blockchains. We show that some stakeholders have

incentives to control a large portion of the whole ecosystem. In particular, we show that the

governance of the blockchain is captured by the dominant equipment producer.

Our model fits the description of the bitcoin mining ecosystem, where the dominant

specialized equipment producer is also the largest player in the pool services market. There

has been a number of instances when Bitmain Technologies —the leading cryptomining ASIC

chip designer —has used its control over a substantial proportion of the hash rate to leave

its mark on the governance of blockchains. Control over hash rate can be used to enforce

hard forks. Hard forks can lead to significant losses to blockchain stakeholders. The most

famous hard fork of the Bitcoin blockchain was the one that created Bitcoin Cash on August

1, 2017, as the result of unresolved disagreements among members of the Bitcoin community

concerning changes to the size of blocks. A few large players in the Bitcoin ecosystem,

including the Bitmain-affi liated pool ViaBTC, sponsored the creation of the new currency,

which shared the same history as Bitcoin but had a larger block size. In November 15, 2018,

Bitcoin Cash itself split into two competing blockchains. Bitmain rallied behind Bitcoin

Cash ABC against Bitcoin Cash SV, in what became known as the “hash wars.” Prices

of both currencies fell steeply right after the split, as did the prices of Bitcoin and other

cryptocurrencies.

What factors explain the influence of specialized equipment producers on blockchain

governance? We show that the combination of a homogeneous good (hash rate) and sunk

entry cost leads to a situation in which a large firm dominates the market for specialized

mining equipment. Such a firm then has incentives to enter the mining pool market in

order to squeeze the profits of other mining pools and thus increase the demand for its own

equipment. Such incentives become stronger as the blockchain becomes more successful, that

is, as crypto prices increase and the equipment producer becomes more effi cient.

According to our model, the equipment producer invests in the mining ecosystem in

order to encourage more individuals to become miners. This explanation corresponds to
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what Bitmain states in its IPO prospectus:

"Catering to our customers’evolving needs, we supplement our core cryptocur-

rency mining ASIC chips design business with (...) our mining pool business.(...)

Our mining pools reduce the risks and volatility of mining and facilitate a steady

return for individual cryptocurrency miners, which encourage more participants

to engage in mining activities."15

Our model also suggests that Nakamoto’s vision on blockchain governance is untenable.

Because market power propagates through the blockchain ecosystem, corporate capture is in

proof-of-work’s DNA. The most popular alternative to proof-of-work is proof-of-stake, which

is a system where the probability that a node is selected for block validation is proportional

to that node’s “stake” in the network.16 It is however not clear that such a system would

avoid the problem of corporate capture. First, by design this system gives more power to

large players. Second, such a system may also create its own industrial ecosystem where

specialized equipment producers play an important role (O’Leary, 2018). In such a case, the

problems highlighted by our model would still be relevant.

Another governance structure that has been suggested is delegated proof-of-stake. In such

a system, blockchain stakeholders vote for delegates who then directly monitor the blockchain

(an example is EOS). This system essentially replicates the traditional governance structure

of corporations, in which shareholders vote for corporate directors, who then monitor man-

agement. Such a system is very different from the direct democracy envisioned by Nakamoto;

it is essentially a system of representative democracy.

A proof-of-work blockchain is a record-keeping technology based on decentralized trust

(Casey and Vigna, 2018). If the governance of the blockchain is captured by a large firm,

blockchain stakeholders have to trust one company to look after their interests. In that case,

one may ask how a decentralized blockchain differs from a traditional financial intermediary

as a provider of trust.

15This quote is from Bitmain’s IPO application to the Hong Kong Stock Exchange in September 2018.
16The definition of stake varies across different implementations. For an economic analysis of the proof-

of-stake concept, see Saleh (2018)

30



References

Abadi, J. and M. Brunnermeier. 2018. Blockchain Economics. Working Paper.

Arruñada, B. and L. Garicano. 2017. Hard Forks: Coordinating Change in Blockchain Plat-

forms. Working Paper.

Becker, G.S. 1985. Public Policies, Pressure Groups, and Deadweight Costs. Journal of Public

Economics. 28: 329-347.

Bennedsen, M and D. Wolfenzon. 2000. The Balance of Power in Closely Held Corporations.

Journal of Financial Economics. 58: 113-39.

Biais, B., C. Bisiere, M. Bouvard, and C. Casamatta. 2018. The Blockchain Folk Theorem.

Review of Financial Studies. forthcoming.

Bolton, P. and EL. von Thadden. 1998. Blocks, Liquidity, and Corporate Control. Journal

of Finance. 53: 1-25.

Brandenburger, A. and B. Nalebuff. 1996. Co-opetition. Harper Collins Business, New York.

Budish, E. 2018. The Economic Limits of Bitcoin and the Blockchain. Working Paper.

Burkart, M., D. Gromb, and F. Panunzi. 1997. Large Shareholders, Monitoring, and the

Value of the Firm. Quarterly Journal of Economics. 112: 693-728.

Burkart, M., D. Gromb, and F. Panunzi. 2000. Agency Conflicts in Public and Negotiated

Transfers of Corporate Control. Journal of Finance. 55: 647-677.

Carbajo, J., D. De Meza, and D. J. Seidmann. 1990. A Strategic Motivation for Commodity

Bundling. Journal of Industrial Economics. 38: 283-298.

Casey, M. J. and P. Vigna. 2018. In Blockchain we Trust. MIT Technology Review. 121(3):

10-16.

Cong, L. W. and Z. He. 2018. Blockchain Disruption and Smart Contracts. Review of Fi-

nancial Studies. forthcoming.

Cong, L. W., Z. He and J. Li. 2018. Decentralized Mining in Centralized Pools. Working

Paper.

31



Dimitri, N. 2017. Bitcoin Mining as a Contest. Ledger. 2: 31-37.

Edmans, A. 2014. Blockholders and Corporate Governance. Annual Review of Financial

Economics. 6: 23-50.

Edmans, A. and G. Manso. 2011. Governance Through Trading and Intervention: A Theory

of Multiple Blockholders. Review of Financial Studies. 24: 2395-428.

Farrell, J. and M. L. Katz. 2000. Innovation, Rent Extraction, and Integration in Systems

Markets. Journal of Industrial Economics. XLVIII: 413-432.

Gawer, A. and R. Henderson. 2007. Platform Owner Entry and Innovation in Complementary

Markets: Evidence from Intel. Journal of Economics & Management Strategy. 16: 1—34.

Huberman, G., J. Leshno, and C. Moallemi. 2017. Monopoly without a Monopolist: An

Economic Analysis of the Bitcoin Payment System. Working Paper.

Ma J., J.S. Gans, and R. Tourky. 2018. Market Structure in Bitcoin Mining.Working Paper.

Maug, E. 1998. Large Shareholders as Monitors: Is There a Trade-offBetween Liquidity and

Control? Journal of Finance. 53: 65-98.

Nakamoto, S. 2008. Bitcoin: A peer-to-peer Electronic Cash System.

Nalebuff, B. 2004. Bundling as an Entry Barrier. Quarterly Journal of Economics. 119:

159-187.

Noe, T. 2002. Investor Activism and Financial Market Structure. Review of Financial Stud-

ies. 15: 289-318.

O’Leary, R. R. 2018. The Creator of Proof-of-Stake Thinks He Finally Figured It

Out. Coindesk. https://www.coindesk.com/the-creator-of-proof-of-stake-thinks-he-finally-

figured-it-out

Perloff, J. and S. Salop. 1985. Equilibrium with Product Differentiation. Review of Economic

Studies. 52: 107-120.

Saleh, F. 2018. Blockchain Without Waste: Proof-of-Stake. Working Paper.

32



Shleifer, Andrei, and Robert W Vishny. 1986. Large Shareholders and Corporate Control.

Journal of Political Economy 94: 461-488.

Stiglitz, J., D. McFadden and S. Peltzman. 1987. Technological Change, Sunk Costs, and

Competition. Brookings Papers on Economic Activity. 1987(3): 883-947.

Whinston, M. 1990. Tying, Foreclosure, and Exclusion. American Economic Review. 80:

837-859.

Winton, A. 1993. Limitation of liability and the ownership structure of the firm. Journal of

Finance. 48: 487-512.

Yermack, D. 2017. Corporate Governance and Blockchains. Review of Finance. 21: 7-31.

Zwiebel, J. 1995. Block investment and partial benefits of corporate control. Review of Eco-

nomic Studies. 62: 161—85.

9. Appendix: Proofs

Proposition 1.

Proof. Firm k’s problem is to

max
p,nk,n

′
k

πk = (p− c)nk +

(
r

nk + n′k
− c+ s′k

)
n′k, (28)

subject to

r

nk + n′k
−min{p, c}+ s ≤ 0 (29)

p ≤ c (30)

nk, n
′
k ≥ 0. (31)

First, note that (30) implies min{p, c} = p. Suppose now (29) is slack in equilibrium, then

we must have nk = 0. The profit function becomes

πk = r + (s′k − c)n′k, (32)
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and the producer’s profit decreases with n′k, which implies that (29) must eventually bind.

Thus (29) cannot be slack. Because (29) binds, then we can rewrite the profit function as

πk = (p− c) (nk + n′k) + (s′k − s)n′k. (33)

If (s′k − s) < 0, then the producer wants the minimum possible n′k, which implies n
′
k = 0,

and thus

nk =
r

p− s. (34)

Replacing (34) in the profit function yields:

πk = r
p− c
p− s. (35)

Since
∂πk
∂p

= r
c− s

(p− s)2 > 0, (36)

constraint p ≤ c binds. In either case, p∗ = c.

If (s′k − s) > 0, then the producer wants the maximum possible n′k, which implies nk = 0,

which requires p = c and

n′k =
r

c− s. (37)

Finally, if (s′k − s) = 0 then any nk and n′k such that nk + n′k = r
c−s is a solution.

Proposition 2.

Proof. Firm k’s problem is to

max
p,nk,n

′
k

πk = (pk − c)nk +

(
r

nk + n′k + nl + n′l
− c+ s′

)
n′k, (38)

subject to

r

nk + n′k + nl + n′l
−min{pk, pl, c}+ s ≤ 0 (39)

pk ≤ min {pl, c} (40)

nk, n
′
l ≥ 0. (41)

Firm l’s problem is symmetric.
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First, note that, in an equilibrium where both firms sell a positive number of machines,

it must be that pk = pl = p. This follows from usual Bertrand competition reasoning: if,

say, pk < pl, all miners would buy only from Firm k. Furthermore, it must be that p = c. If

not, there is a profitable deviation: a firm may reduce its price by small ε > 0 and capture

the whole market.

We need to consider three cases.

Case 1: (s′ − s) < 0. (i) Suppose first that n∗ ≡ nk + nl > 0. Then it follows that p =

c and thus we have
r

nk + n′k + nl + n′l
− c+ s = 0. (42)

The profit function becomes

πk =

(
r

nk + n′k + nl + n′l
− c+ s′

)
n′k, (43)

which is strictly negative for any n′k > 0, implying that we must have n′k = n′l = 0. This is

the only equilibrium with positive sales n∗ > 0.

Thus, in any equilibrium with positive sales, there is no self mining and profits are zero

(p = c).

(ii) Suppose now that n∗ = 0. Let p = min {pk, pl}, and without loss of generality,
suppose p = pk. The entry condition is

r

n′k + n′l
− p+ s < 0. (44)

Firm k’s profit is

πk =

(
r

n′k + n′l
− c+ s′

)
n′k. (45)

Define n∗∗ = n′k + n′l. Because
r

n∗
− c+ s = 0, (46)

if n∗∗ ≥ n∗ then we would have

πk =
( r

n∗∗
− c+ s′

)
n′k < 0, (47)
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which cannot be optimal. Thus, we must have n∗∗ < n∗. Then, we also have

r

n∗∗
− p+ s < 0, (48)

requires p > p̂ > c, where

p̂ =
r

n∗∗
+ s. (49)

We now show that this cannot be an equilibrium. Consider a deviation where Firm k sets

pk = p̂ and chooses n′k = 0. The firm will then sell an amount nk such that

r

n′l + nk
− p̂+ s = 0, (50)

which implies nk = n′k. The profit is then

(p̂− c)n′k =
( r

n∗∗
− c+ s

)
n′k >

( r

n∗∗
− c+ s′

)
n′k, (51)

thus this is a profitable deviation. Thus, there is no equilibrium with zero sales.

We conclude that, if s′ − s < 0, all equilibria require n′k = n′l = 0 and both firms make

zero profit.

Case 2: s′ − s > 0. (i) Suppose first that n∗ = 0. The maximization problem becomes

max
n′k

πk =

(
r

n′k + n′l
− c+ s′

)
n′k, (52)

and the first-order condition is

r

n′k + n′l
− c+ s′ − rn′k

(n′k + n′l)
2 = 0. (53)

In a symmetric equilibrium, n′k = n′l = n′ where

n′ =
r

4 (c− s′) , (54)

provided that the free entry condition is slack:

2 (c− s′) < c− s. (55)
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Total profit is then

π =
r

4 (c− s′) [2 (c− s′)− c+ s′] =
r

4
. (56)

If (55) does not hold, we have

n′ =
r

2 (c− s) , (57)

and the profit is

π =
r (c− c+ s′ − s)

2 (c− s) . (58)

We now show that this is an equilibrium. Consider a deviation where Firm k sets pk = p̂

and chooses n′k = 0. The firm will then sell an amount nk such that

r

nk + n′l
− p̂+ s = 0, (59)

which implies nk = n′k. Firm k’s profit is then

(p̂− c)n′k =
( r

n∗∗
− c+ s

)
n′k <

( r

n∗∗
− c+ s′

)
n′k, (60)

thus no profitable deviation exists.

(ii) Suppose now that n∗ > 0. The entry constraint must be binding:

r

nk + n′k + nl + n′l
− c+ s = 0. (61)

Because p = c, Firm k’s profit is(
r

nk + n′k + nl + n′l
− c+ s′

)
n′k = (s′ − s)n′k > 0 (62)

so there is a profitable deviation, which is to increase n′k. Thus, this cannot be an equilibrium.

We conclude that, if s′ − s > 0, all equilibria require nk = nl = 0 and both firms make

positive profit.

Case 3: s′− s = 0. Using the same arguments as in Cases 1 and 2, it can be shown that

both types of equilibria are possible in this zero measure case.

Proposition 3.

Proof. Let δ denote the common discount rate. Proposition 2 implies that in any
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equilibrium with two firms and n∗1 +n∗2 > 0, profits are zero for both firms, and s′ ≤ s. Thus,

assume s′ ≤ s. At t = 2, suppose that Firm 1 is an incumbent. If Firm 2 enters, it enjoys

zero profit in perpetuity (we assume that Firm 1 does not exit after Firm 2 enters) and pays

entry cost ι, thus it will not enter in this case. At t = 3, the same reasoning implies that

Firm 3 will also not enter if either Firm 1 or Firm 2 is an incumbent, and so on for t > 3.

Thus, if Firm 1 enters, no firm at periods t = 2, 3, ... will enter. Thus Firm 1 chooses to

enter if and only if
r (c− c)
δ (c− s) ≥ ι. (63)

If condition (63) does not hold, Firm 1 will not enter. Firm 2 then faces the same problem

as Firm 1, and also chooses not to enter, and so on for t > 2. Thus, equilibrium is such that

only Firm 1 enters if and only if (63) holds, otherwise no firm enters.

Proposition 4

Proof. The two pools choose f1 and f2, such that:

max
f1

Π1 (f1, f2) + π (f1, f2) =
rf1 (1−H(f1 − f2))

c− µ+ e (f1,f2)
+

r (c− c)
c− µ+ e (f1,f2)

, (64)

max
f2

Π2 (f1, f2) =
rf2H(f1 − f2)

c− µ+ e (f1,f2)
, (65)

where

e (f1,f2) ≡ f1 (1−H(f1 − f2)) + f2H(f1 − f2). (66)

Let H∗ ≡ H(f ∗1 − f ∗2 ) and h∗ ≡ h(f ∗1 − f ∗2 ), the simplified first order conditions are:

(c− µ+ f ∗2H
∗) (1−H∗)− f ∗1h∗ (c− µ+ f ∗2 )− (c− c)(1−H∗ − (f ∗1 − f ∗2 )h∗) = 0 (67)

(c− µ+ f ∗1 (1−H∗))H∗ − f ∗2h∗(c− µ+ f ∗1 ) = 0, (68)

From equations (67) and (68) we express f ∗1 and f
∗
1 as follows:

f ∗1 =

(
c− µ+ f ∗2H

∗

c− µ+ f ∗2

)
(1−H∗)

h∗
− (c− c)(1−H∗ − (f ∗1 − f ∗2 )h∗)

(c− µ+ f ∗2 )h∗
(69)

f ∗2 =

(
c− µ+ f ∗1 (1−H∗)

c− µ+ f ∗1

)
H∗

h∗
(70)
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We replace H∗ = 0.5 + ε and simplify:

f ∗1 =

(
c− µ+ f ∗2 (0.5 + ε)

c− µ+ f ∗2

)
(0.5− ε)

h∗
− (c− c) (0.5− ε)

(c− µ+ f ∗2 )h∗
+

(f ∗1 − f ∗2 )(c− c)
(c− µ+ f ∗2 )

(71)

f ∗2 =

(
c− µ+ f ∗1 (0.5− ε)

c− µ+ f ∗1

)
(0.5 + ε)

h∗
(72)

We subtract (72) from (71) and simplify:

(f ∗1 − f ∗2 ) (c− µ+ f ∗2 ) =
(0.5−ε)(c−µ+f∗2 (0.5+ε))(c−µ+f∗1 )

h∗(c−µ+f∗1 )
= (73)

− (0.5+ε)(c−µ+f∗1 (0.5−ε))(c−µ+f∗2 )
h∗(c−µ+f∗1 )

− (c−c)(0.5−ε)
h∗ = (74)

(−2ε(c−µ)2−(f∗1−f∗2 )(c−µ)(0.52−ε2)+f∗1 (c−µ)(0.5−ε)−f∗2 (c−µ)(0.5+ε))
h∗(c−µ+f∗1 )

− (c−c)(0.5−ε)
h∗ = (75)

=
(−2ε(c−µ)(c−µ+f∗2 )+(f∗1−f∗2 )(c−µ)(0.5−ε)2)

h∗(c−µ+f∗1 )
− (c−c)(0.5−ε)

h∗ ,

which implies

(f ∗1 − f ∗2 ) f ∗2

(
c−µ
f∗2

+ 1− (c−µ)(0.5−ε)2
f∗2 h
∗(c−µ+f1)

)
= −2ε(c−µ)(c−µ+f∗2 )

(c−µ+f∗1 )h∗
− (c−c)(0.5−ε)

h∗ (76)

Since f ∗2h
∗ (c− µ+ f ∗1 ) = (c− µ+ f ∗1 (0.5− ε)) (0.5 + ε) we can further simplify:

(f ∗1 − f ∗2 ) f ∗2

(
c−µ
f∗2

+ 1− (c−µ)(0.5−ε)2

(c−µ+f∗1 (0.5−ε))(0.5+ε)

)
= −2ε(c−µ)(c−µ+f∗2 )

(c−µ+f∗1 )h∗
− (c−c)(0.5−ε)

h∗ . (77)

First we consider the case where ε = 0, that is H∗ = 0.5. We simplify (77) accordingly

(f ∗1 − f ∗2 ) f ∗2

(
c− µ
f ∗2

+ 1− (c− µ) 0.5

(c− µ+ f ∗1 0.5)

)
= −(c− c)0.5

h(0)
. (78)

Since
(
c−µ
f∗2

+ 1− (c−µ)0.5

(c−µ+f∗1 0.5)

)
> 0, from (78) it follows that f ∗1 < f ∗2 , which is in contradic-

tion with H∗ = 0.5.

Second we consider the case where ε > 0, that is H∗ > 0.5. Since

f ∗2

(
c− µ
f ∗2

+ 1− (c− µ) (0.5− ε)2

(c− µ+ f ∗1 (0.5− ε)) (0.5 + ε)

)
> 0, (79)
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and since for ε > 0 the right hand side of equation (77) is negative it follows that f ∗1 <

f ∗2 , which is in contradiction with H
∗ > 0.5.

Finally we consider the case where ε < 0, that is H∗ < 0.5. In this case we can have a

solution where f ∗1 < f ∗2 . So if a solution exist it must be such that f
∗
1 < f ∗2 and H

∗ < 0.5.

Since ϕ1(f ∗1 , f
∗
2 ) = α (1−H∗) and ϕ2(f ∗1 , f

∗
2 ) = αH∗ and H∗ < 0.5, it follows that

ϕ1(f ∗1 , f
∗
2 ) > ϕ2(f ∗1 , f

∗
2 ) and I (ϕ1(f ∗1 , f

∗
2 ), ϕ2(f ∗1 , f

∗
2 )) > I (ϕ2(f ∗1 , f

∗
2 ), ϕ1(f ∗1 , f

∗
2 )) .

Proposition 5.

Proof. The first-order conditions that determine the equilibrium fees are:

∂Π1 (f ∗1 , f
∗
2 )

∂f1

+
∂π (f ∗1 , f

∗
2 )

∂f1

= 0 (80)

∂Π2 (f ∗1 , f
∗
2 )

∂f2

= 0. (81)

Suppose that the equilibrium is such that f ∗1 > f ∗2 . Then, because of strategic complemen-

tarities, we have
∂Π2 (f ∗2 , f

∗
2 )

∂f2

< 0. (82)

Symmetry implies
∂Π2 (f ∗2 , f

∗
2 )

∂f2

=
∂Π1 (f ∗2 , f

∗
2 )

∂f1

< 0. (83)

Now, concavity implies
∂Π1 (f ∗2 , f

∗
2 )

∂f1

>
∂Π1 (f ∗1 , f

∗
2 )

∂f1

, (84)

and therefore
∂Π1 (f ∗1 , f

∗
2 )

∂f1

< 0. (85)

But because ∂π(f1,f2)
∂f1

< 0, (85) contradicts (80). Thus,there cannot be an equilibrium where

f ∗1 ≥ f ∗2 .
17 This implies that f ∗1 < f ∗2 , and n

∗
1 > n∗2, where n

∗
1 is the equilibrium number

of miners who join Pool 1 and n∗2 is the equilibrium number of miners who join Pool 2.

Since ϕ1(f ∗1 , f
∗
2 ) =

αn∗1
n∗ and ϕ2(f ∗1 , f

∗
2 ) =

αn∗2
n∗ , it follows that ϕ1(f ∗1 , f

∗
2 ) > ϕ2(f ∗1 , f

∗
2 ) and

I (ϕ1(f ∗1 , f
∗
2 ), ϕ2(f ∗1 , f

∗
2 )) > I (ϕ2(f ∗1 , f

∗
2 ), ϕ1(f ∗1 , f

∗
2 )) .

Proposition 6

17The case of f∗1 = f∗2 is trivial to rule out by using only symmetry and
∂π(f1,f2)

∂f1
< 0.
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Proof. We start by characterizing the equilibrium when 2 independent pools compete in

the pool market. As before bj = 0 for j = {1, 2} . Each pool maximizes its expected profit:

max
f1

Π1 =
rf1 (1−H(f1 − f2))

c− µ+ f1 (1−H(f1 − f2)) + f2H(f1 − f2)
(86)

max
f2

Π2 =
rf2H(f1 − f2)

c− µ+ f1 (1−H(f1 − f2)) + f2H(f1 − f2)
(87)

Let H∗ ≡ H(f ∗1 − f ∗2 ) and h∗ ≡ h(f ∗1 − f ∗2 ), the simplified first order conditions are:

(c− µ+ f ∗2H
∗) (1−H∗ − f ∗1h∗)− f ∗1 (1−H∗) f ∗2h∗ = 0, (88)

(c− µ+ f ∗1 (1−H∗)) (H∗ − f ∗2h∗)− f2H
∗f ∗1h

∗ = 0. (89)

From the first order conditions we can express f ∗1 and f
∗
2 as follows

f ∗1 =
(c− µ+ f ∗2H

∗) (1−H∗)
(c− µ+ f ∗2 )h∗

, (90)

f ∗2 =
(c− µ+ f ∗1 (1−H∗))H∗

(c− µ+ f ∗1 )h∗
. (91)

From (90) and (91)

(f ∗1 − f ∗2 )

(
1 +

(c−µ)(f∗1−f∗2 )H∗(1−H∗)
h∗(c−µ+f∗1 )(c−µ+f∗2 )

)
= (c−µ)2(1−2H∗)

h∗(c−µ+f∗1 )(c−µ+f∗2 )
(92)

which is equivalent to

(f ∗1 − f ∗2 )

(
1 +

f∗2 (c−µ)(f∗1−f∗2 )(1−H∗)

(c−µ+f∗1 (1−H∗))(c−µ+f∗2 )

)
=

f∗2 (c−µ)2(1−2H∗)

(c−µ+f∗1 (1−H∗))(c−µ+f∗2 )H∗
. (93)

First we note that
(

1 +
f∗2 (c−µ)(f∗1−f∗2 )(1−H∗)

(c−µ+f∗1 (1−H∗))(c−µ+f∗2 )

)
> 0. Assume that H∗ > 0.5, then the

right hand side of (93) is negative which would imply that f ∗1 < f ∗2 ,which contradicts H
∗ >

0.5. Assume now thatH∗ < 0.5, then the right hand side of (93) is positive which would imply

f ∗1 > f ∗2 ,which contradicts H
∗ < 0.5.Since H(0) = 0.5, (93) is only satisfied for f ∗1 = f ∗2 = f ∗.

We can now simplify (90) as follows

(c− µ+ 0.5f ∗) (0.5− f ∗h(0))− 0.5f ∗2h(0) = 0 (94)

41



⇔ f ∗2 + f ∗ (c− µ− 0.25)− (c− µ) 0.5

h(0)
= 0 (95)

f ∗ =

√
(c− µ− 0.25)2 + 2(c−µ)

h(0)
− (c− µ− 0.25)

2
. (96)

Note that f ∗ is independent of r and c.

The equipment producer is better off entering the market without full control, rather

than entering the market with full control if:

r (c− c)
c− µ+ e[f ∗1 , f

∗
2 ]

+
rf1 (1−H∗)

c− µ+ e[f ∗1 , f
∗
2 ]
<

r (c− c)
c− µ+ f ∗

+
r0.5f ∗

c− µ+ f ∗
, (97)

where f ∗1 and f
∗
2 are the equilibrium fees and (1−H∗) (resp. H∗) is the equilibrium market

share of Pool 1 (resp. Pool 2) in the case where Pool 1 is fully controlled by the equipment

producer, and f ∗ is as in equation (96).

Proposition 7

Proof. Suppose that an independent pool enters the market. Let ΠI denote the equilib-

rium profit of that pool gross of entry costs. Suppose instead that the equipment producer

is the entrant. Let ΠC denote the equilibrium profit in the pool market (gross of entry costs)

of the producer if it enters with full control rights. If it instead enters without control rights,

its profit is identical to that of an independent entrant, ΠI . Let πI1 denote the equilibrium

profit in the equipment market if an independent pool enters the pool market. Let πC1 denote

the equilibrium profit in the equipment market if the pool that enters the pool market is

fully controlled by the equipment producer. Finally, let π1 denote the equilibrium profit in

the equipment market if there is only one pool in the market.

An independently owned pool enters the mining pool market if:

ΠI ≥ κ (98)

The equipment producer enters the mining pool market if:

max
{

ΠI + πI1,Π
C + πC1

}
− π1 ≥ κ (99)

A suffi cient condition for the equipment producer to have higher incentives to enter the pool
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market relative to an independent pool is:

πI1 ≥ π1 (100)

r(c− c)
c− µ+ f ∗

≥ r(c− c)
c− µ+ f 0

, (101)

where f ∗ is the equilibrium fee with two independent pools and f 0 is the equilibrium fee

chosen by a monopolist pool. Since the fee chosen by a monopolist pool is always such that

f 0 ≥ υ,then a suffi cient condition for (101) to hold is:

f ∗ ≤ υ ⇔

√
(c− µ− 0.25)2 +

2 (c− µ)

h(0)
< 2υ + (c− µ− 0.25) . (102)

Under Assumption 1 condition (102) always holds.

The equipment producer’s incentive to enter relative to an independent pool is therefore

given by:

RI =
r(c− c)
c− µ+ f ∗

− r(c− c)
c− µ+ f 0

= r(c− c) f 0 − f ∗
(c− µ+ f ∗) (c− µ+ f 0)

. (103)

Proposition 8.

Proof. Mining pools choose fees simultaneously to maximize their profits:

max
f1

Π1 (f1, f2) + π (f1, f2) +
b1

2 (1− α)
[1− 2αH(f1 − f2)φ] (104)

max
f2

Π2 (f1, f2) +
b2

2 (1− α)
[1− 2α (1−H(f1 − f2))φ] , (105)

where φ is the probability that Pool 1 and Pool 2 disagree on their preferred proposal. Let

H∗ ≡ H(f ∗1 − f ∗2 ) and h∗ ≡ h(f ∗1 − f ∗2 ), the simplified first order conditions are as follows:

(c− µ+ f ∗2H
∗) (1−H∗)− f ∗1h∗ (c− µ+ f ∗2 )− (c− c)(1−H∗ − (f ∗1 − f ∗2 )h∗)− b1αφh∗n2

(1−α)r
= 0,

(106)

(c− µ+ f ∗1 (1−H∗))H∗ − f ∗2h∗(c− µ+ f ∗1 )− b2αφh∗n2

(1−α)r
= 0. (107)
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From equations (106) and (107) we express f ∗1 and f
∗
1 as follows

f ∗1 =
(
c−µ+f∗2H

∗

c−µ+f∗2

)
(1−H∗)
h∗ − (c−c)(1−H∗−(f∗1−f∗2 )h∗)

(c−µ+f∗2 )h∗ − b1αφn2

(1−α)(c−µ+f∗2 )r
, (108)

f ∗2 =
(
c−µ+f∗1 (1−H∗)

c−µ+f∗1

)
H∗

h∗ −
b2αφn2

(1−α)(c−µ+f∗1 )r
. (109)

Let H∗ ≡ 0.5 + ε, then (108) and (109) can be rewritten as follows:

f ∗1 =
(
c−µ+f∗2 (0.5+ε)

c−µ+f∗2

)
(0.5−ε)
h∗ − (c−c)(0.5−ε)

(c−µ+f∗2 )h∗ +
(f∗1−f∗2 )(c−c)

(c−µ+f∗2 )
− b1αφn2

(1−α)(c−µ+f∗2 )r
(110)

f ∗2 =
(
c−µ+f∗1 (0.5−ε)

c−µ+f∗1

)
(0.5+ε)
h∗ − b2αφn2

(1−α)(c−µ+f∗2 )r
(111)

We subtract (111) from (110) and simplify:

(f ∗1 − f ∗2 ) (c− µ+ f ∗2 ) =
(0.5−ε)(c−µ+f∗2 (0.5+ε))(c−µ+f∗1 )

h∗(c−µ+f∗1 )
− αφ(b1(c−µ+f∗1 )−b2(c−µ+f∗2 ))n2

(1−α)(c−µ+f∗1 )r

− (0.5+ε)(c−µ+f∗1 (0.5−ε))(c−µ+f∗2 )
h∗(c−µ+f∗1 )

− (c−c)(0.5−ε)
h∗

(112)

(f ∗1 − f ∗2 ) (c− µ+ f ∗2 ) =
(−2ε(c−µ)2−(f∗1−f∗2 )(c−µ)(0.52−ε2)+f∗1 (c−µ)(0.5−ε)−f∗2 (c−µ)(0.5+ε))

h∗(c−µ+f∗1 )

− (c−c)(0.5−ε)
h∗ − α(φ2+φ3)((b1−b2)(c−µ))n2

(1−α)(c−µ+f∗1 )r
− α(φ2+φ3)(b1f∗1−b2f∗2 )n2

(1−α)(c−µ+f∗1 )r

(113)

(f ∗1 − f ∗2 ) f ∗2

(
c−µ
f∗2

+ 1− (c−µ)(0.5−ε)2
f∗2 h
∗(c−µ+f1)

)
= −2ε(c−µ)(c−µ+f∗2 )

(c−µ+f∗1 )h∗
− (c−c)(0.5−ε)

h∗

−αφ(b1−b2)(c−µ)n2

(1−α)(c−µ+f∗1 )r
− αφ(b1f∗1−b2f∗2 )n2

(1−α)(c−µ+f∗1 )r

.

For b1 = b2 = b:

(f ∗1 − f ∗2 ) f ∗2

(
c−µ
f∗2

+ 1− (c−µ)(0.5−ε)2
f∗2 h
∗(c−µ+f1)

+ αφbn2

f∗2 (1−α)(c−µ+f∗1 )r

)
= −2ε(c−µ)(c−µ+f∗2 )

(c−µ+f∗1 )h∗
− (c−c)(0.5−ε)

h∗ .

(114)

The rest of the proof is the same as for Proposition 4.

Proposition 9.

Proof. Let β ≡ n′

n+n′ , where n
′
is the amount of computational power used by the

equipment producer for self-mining and n is the amount of computational power sold by the

equipment producer. In this setting the equilibrium proportion of hash rate controlled by

44



Pool 1 (the pool owned by the equipment producer) is:

ϕ1(f ∗1 , f
∗
2 , β

∗) = β∗ + (1− β∗)α(1−H∗)

In the voting game we consider four cases, depending on the preferences of Pool 1 and

Pool 2.

Case 1: z1 = z2 = A. The fraction of votes for proposal A is

β + (1− β) (α + (1− α) ρ) . (115)

Case 2: z1 = A and z2 = B. The fraction of votes for proposal A is

β + (1− β) (α (1−H) + (1− α) ρ) . (116)

Case 3: z1 = B and z2 = A. The fraction of votes for proposal A is

(1− β) (αH + (1− α) ρ) (117)

Case 4: z1 = z2 = B. The fraction of votes for proposal A is

(1− β) (1− α) ρ (118)

The probability that Pool 1’s preferred proposal is adopted is then:

I(f1, f2, β) =


1−2αH(1−β)φ
2(1−α)(1−β)

if β < 0.5−α
1−α

1− 0.5−α(1−H)−β(1−α(1−H))
2(1−α)(1−β)

φ if 0.5−α+αH
1−α+αH

> β ≥ 0.5−α
1−α

1 if β ≥ 0.5−α+αH
1−α+αH

, (119)

where φ is the probability that the two Pools disagree (that is Case 2 and Case 3). It follows

that

∂I(f1, f2, β)

∂β
=


1

2(1−α)(1−β)2
if β < 0.5−α

1−α

0.5φ

2(1−α)(1−β)2
if 0.5−α+αH

1−α+αH
> β ≥ 0.5−α

1−α

0 if β ≥ 0.5−α+αH
1−α+αH

. (120)
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The expected profit of the equipment producer is:

Π1 + π1 =
r
[
c− c+ f1 (1−H)− β

(
µ− f2H − s

′)]
c− µ+ f1 (1−H) + f2H

+ b1I(f1, f2, β) (121)

and therefore the first order condition with respect to β (the amount of self mining) is

∂ (Π1 + π1)

∂β
= −

r
(
µ− f2H − s

′)
c− µ+ f1 (1−H) + f2H

+ b1
∂I(f1, f2, β)

∂β
= 0. (122)

There will be some level of self mining in equilibrium if for β = 0:

∂ (Π1 + π1)

∂β
= −

r
(
µ− f2H − s

′)
c− µ+ f1 (1−H) + f2H

+ b1
∂I(f1, f2, β)

∂β
> 0, (123)

that is

−
r
(
µ− f2H − s

′)
c− µ+ f1 (1−H) + f2H

+
b1

2 (1− α)
> 0. (124)

If b1
2(1−α)

> r(µ−s′)
c−µ , then condition (124) always holds and β > 0 in equilibrium.
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